Code No.: 21515 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (I.T.) I-Semester Supplementary Examinations, May/June-2017

Signals and Systems

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Differentiate energy signal and power signal.
- 2. What is Signum function? How it is related with unit step function?
- 3. Define Static and Dynamic systems.
- 4. Define natural response and forced response of an LTI system.
- 5. What are orthogonal functions? List out orthogonal functions.
- 6. What is Gibbs phenomenon?
- 7. Why the ROC of Laplace Transform cannot contain any poles?
- 8. What will happen when the signal is under sampled? Explain.
- 9. Under what conditions discrete time Fourier transform and Z-transform are identical?
- 10. Define Region of Convergence of Z-Transform.

Part-B $(5 \times 10 = 50 \text{ Marks})$ (All bits carry equal marks)

- 11. a) Let x(t) is an energy signal with energy E[x(t)], and let 'T' be a non-zero, finite, real valued constant. Prove that E[x(t-T)] = E[x(t)]. Comment on the result.
 - b) Find the convolution of two signals : $x(n) = y(n) = \{1, 2, 3, 4\}$.
- 12. a) Classify the systems with examples.
 - b) Test for the linearity, causality, time invariance and stability of the system governed by the equation: y(n) = x(n) + nx(n-1)
- 13. Express the function e^t over interval 0 < t < 1 by
 - a) Trigonometric Fourier series.
 - b) Exponential Fourier series.
- 14. a) State and prove sampling theorem of band limited signals.

b) Find the inverse Laplace transform of $\frac{3s}{(s^2+1)(s^2+4)}$.

- 15. a) State and Prove the Time shifting and Convolution in time domain properties of Discrete Time Fourier Transform (DTFT).
 - b) Find inverse Z-transform of $X(Z) = \frac{Z}{3Z^2 4Z + 1}$ if the region of convergence in three case are: $Z > 1, Z < \frac{1}{3}$ and $\frac{1}{3} < Z < 1$.
- 16. a) Write a MATLAB program to find the even and odd parts of a signal x(t) = e^{-3t}.
 b) Derive the expression for convolution integral of an LTI system.
- 17. Answer any two of the following:
 - a) A filter has an input $x(t) = e^{-2t} u(t)$ and transfer function $H(w) = \frac{1}{1+jw}$. Find the ESD of the output.
 - b) State and prove initial and final value theorem of Laplace transform.
 - c) Determine the system function of a Discrete Time LTI system described by the difference Equation $y(n) \frac{1}{3}y(n-1) + \frac{1}{5}y(n-2) = x(n) 2x(n-1)$. Also discuss the stability.

CSCSCSEDEDED